
SANDIA REPORT
SAND2016-0765
Unlimited Release
Printed January 2016

SWiFT Software Quality Assurance Plan
Jonathan C. Berg

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: http://www.ntis.gov/search

mailto://reports@osti.gov
http://www.osti.gov/scitech
mailto://orders@ntis.gov
http://www.ntis.gov/search

3

SAND2016-0765
Unlimited Release

Printed January 2016

SWiFT Software Quality Assurance Plan

Jonathan C. Berg
Wind Energy Technologies Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS1124

Abstract

This document describes the software development practice areas and processes
which contribute to the ability of SWiFT software developers to provide quality
software. These processes are designed to satisfy the requirements set forth by the
Sandia Software Quality Assurance Program (SSQAP).

4

APPROVALS

SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by:

Department Manager SWiFT Site Lead

Dave Minster (6121) Date Jonathan White (6121) Date

SWiFT Controls Engineer

Jonathan Berg (6121) Date

5

CHANGE HISTORY

Issue Date Originator(s) Description
A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality

Assurance Plan

6

ACKNOWLEDGMENTS

This document makes use of the process examples provided by the Sandia National Laboratories
Advanced Simulation and Computing (ASC) Software Quality Support Team.

The initial SWiFT turbine controller was written by Vestas Technology R&D in collaboration
with Sandia National Laboratories Wind Energy Technologies department.

7

CONTENTS

Approvals...4
Change History ..5
Acknowledgments ...6
Definition of Terms ...8
1. Introduction ...9
2. Summary of Software Development, Release, and Deployment11
3. Software Development Process...13
4. Configuration Management Process ...17
6. Risk Management Process ..23
7. Requirements Engineering Process ...25
8. Software Verification Process ...27
9. Deployment and Operations Support Process ...31
10. Project Planning, Tracking, and Oversight Process ..33
11. Training Process..37
12. References ...39
Appendix A: SSQAP Required Practice Activities Table ..41
Distribution ..45

FIGURES

Figure 1. Diagram of the V-model. ...15
Figure 2: Hardware-in-the-Loop Block Diagram, Ref [2]...29
Figure 3: Hardware-in-the-Loop connection diagram. ..29
Figure 4: Hardware-in-the-Loop system packaged in two Pelican cases.30
Figure 5: Hardware-in-the-Loop drivetrain simulator. ..30

8

DEFINITION OF TERMS

Archive: 1) (verb) to store software configuration items, issues, and/or releases in a repository or
shared location; 2) (noun) the repository or shared location containing software configuration
items, issues, and/or releases.

Artifact: one of many types of work products resulting from the software development process.
Design artifacts include documentation and design review records. Implementation artifacts
include work products such as software code, user documentation, developer’s guide, theory
manual, and interface manual. Project planning artifacts include project plan and budget.

Baseline: 1) (noun) a set of software configuration items that serves as the basis for further
development; 2) (verb) to capture a snapshot of a set of software configuration items at a
reference point within the promotion model lifecycle.

Configuration Management: a discipline of identifying software configuration items and
applying version control, tracking issues, labeling releases, and providing backup and recovery
of data. Establishes and maintains a controlled repository (a baseline) of all artifacts created or
collected during the software engineering process.

Release: (1) (noun) the contents of a baseline including executables and build instructions, if
applicable. A release may be what is sent to an end-user, installed on a server, or provided for
testing, and can be reproduced. A release can consist of all the files from the baseline from
which it is created or it can consist of a subset of those baselined files. A release may also
contain executables or build instructions; 2) (verb) to create the physical copy of the components
contained within a baseline or built executables from the components of a baseline and make it
available for installation or distribution.

Repository: a shared storage location where the archives for version-controlled files, issues,
and/or releases are kept.

Revision: a recorded change to a software configuration item. Each time a user modifies a file
and checks it back into a tool (cvs, Version Manager, etc.) the tool creates a new revision and
assigns it a new revision number.

Version control: the process of recording revisions to software configuration items.

Version Control System: a central repository from which project deliverables can be managed.
Typically, a version control system assigns revision numbers to each incremental change of a
deliverable for tracking purposes. A version control system may also allow deliverable revisions
to be tied to a general software release level, so that changes in software releases are traceable
back to the deliverable revisions.

9

1. INTRODUCTION

This document describes the software development practice areas and processes which
contribute to the ability of SWiFT software developers to provide quality software. These
processes are designed to satisfy the requirements set forth by the Sandia Software Quality
Assurance Program (SSQAP). A summary of SSQAP Required Practice Activities is given in
Appendix A.

The software products in use at SWiFT include the following components, some of which are
developed and maintained by Sandia and some of which are third-party software components
which must also be considered in the software quality processes.

Sandia-maintained Software Components
 Turbine Controller with integrated data acquisition
 Met Tower data acquisition software
 SWiFT Control user interface for turbines and met towers
 Modifications to the Veristand Scan Engine and EtherCAT custom device for ABB

ACS800 drive EtherCAT support
 FTP data file transfer program (from data source to control building)
 RMFT SWiFT-to-SNLNM database transfer routine
 ABB ACS800 drive parameter configuration
 Data analysis routines

Third-party Software Components
 National Instruments cRIO base software (Pharlap operating system & Veristand engine)
 National Instruments Veristand Add-on: Scan Engine and EtherCAT custom device1

 ABB ACS800 drive-side firmware and line-side firmware

1 https://decibel.ni.com/content/docs/DOC-15510

10

11

2. SUMMARY OF SOFTWARE DEVELOPMENT, RELEASE, AND
DEPLOYMENT

Software Development Process
1. Analyze requirements, create high level design, and assign tasks
2. Identify software implementation approach (what algorithms, how to meet software

specification) and create detailed design
3. Document the detailed design
4. Plan and perform design review
5. Develop required software
6. Review and test

6.1. Perform code review
6.2. Perform isolated software component testing to verify that input-output behavior meets

the requirements
6.3. Perform integration software testing of component within full software system on

hardware-in-the-loop
7. Document results, including software issues that must be addressed, and update requirements

as needed
8. Iterate until all software requirements are met

Software Release Procedure
1. Assign version control Package Release Number

1.1. Document version numbers of software sub-components that compose the release
1.2. Tag the TeamForge or EIMS repositories with the Package Release Number

2. Assemble installation package including release notes. Release notes shall include issue
tracking metrics and summaries.

3. Deploy installation package to the hardware-in-the-loop test environment
4. Complete hardware-in-the-loop verification tests

4.1. When Package Release has passed, obtain signatures documenting approval
4.2. Archive report and approvals under the Package Release Number

5. Transfer package to SWiFT

Deployment Procedure
1. SWiFT site lead verifies approvals and test report
2. Operators examine release notes
3. Copy release package to network storage
4. Install the release package on each asset
5. Document the date and time of installation on each asset
6. Perform software commissioning checks

12

13

3. SOFTWARE DEVELOPMENT PROCESS
Purpose
The purpose of the software development process is to produce a correctly functioning product
for the intended application. Generally, the software development process includes design,
implementation, and testing of the software products or reuse of existing implementations.
Design is the process of defining architecture, components, interfaces, and other characteristics
of a system or components. Design activities transform requirements into artifacts that are used
for the development of software. These artifacts implement the requirements and are updated to
reflect the “as built” product. Design reviews are an important aspect of software development.
This process incorporates activities from the following SSQAP practice areas (see Appendix A):

Technical Solution [TS]
Product Integration [PI]
Problem Reporting and Corrective Actions [PR]

Relationships
This process is driven by results of the following process areas:

 requirements engineering
 process implementation and improvement
 project planning, tracking, and oversight
 software verification practice areas

For example, the requirements engineering process results in the software requirements that the
software development process must address. The project team creates the required product
artifacts (e.g., user documentation, developer’s guide, and installation guide) using the
documented project processes. The impact of implementation choices on design is continuously
incorporated. Relevant stakeholders are informed of issues and included in decisions.
Documentation of a design supports development, product maintenance, tracing of requirements,
verification, and end users. Issues presented by software verification may require revisiting the
software development activities.

Steps
STEP

#
STEP

DESCRIPTION
STEP

ACTIVITY
1 Analyze requirements,

create high level design,
and assign tasks

 Analyze requirements applicable to the new functionality
 Generate one or more high level preliminary designs
 Based upon feasibility, choose a preferred design and document the

selection process
 Assign requirements to team members based on current work load,

expertise and ability to complete the task in the specified timeframe
2 Identify Software

Development
Methodology and
Implementation
Approach

 Evaluate the assigned tasks
 Determine the software development methodology used by the

development team and identify coding guidelines
 Identify the approach for completion of the tasks from a design

perspective (e.g., what algorithm must be implemented, how will the
specification of the requirement be completed [input], etc.)

3 Document design Capture and document design artifacts:

14

STEP
#

STEP
DESCRIPTION

STEP
ACTIVITY

 Communicate the design with project team and project
stakeholders

 Convene meetings with project stakeholders and
collaborators to address large design issues or interfaces
resulting in documentation

4 Identify reviewers and
perform design review

 Identify reviewers for the design and code
 Convene periodic meetings with all developers and relevant

stakeholders to reassess requirements tasks and agendas
 Discuss problems, delays, and anything that might have

slipped through the cracks
 Reconsider requirements coverage, tasks, and assignments
 Update design documents as necessary to reflect changes

made
5 Develop required

software
 Modify the code base in a manner sufficient to capture the

required functionality
 Comment code at a level suitable for traceability and

maintenance
 Adhere to project team coding guidelines
 Commit all code to version control

6 Review and unit test Review all designs and code
 Unit test all code in preparation for verification (formal

testing)
 Document all reviews and test results
 Ensure all action items as a result of reviews and testing are

collected in an issue tracking log and are managed to closure

7 Finalize documentation In some cases and sometimes in response to verification
results, update manuals.

 Ensure that the proper changes to supplemental document
artifacts are completed and updated

 Document traceability of design, code, and test to
requirements

Process Model

Another way of looking at the above process steps is in terms of a process model. The V-model
depicted in Figure 1 is one common software development model. The left side represents the
sequential execution of development processes: defining requirements, designing a solution, and
implementing the solution. The right side represents the sequential execution of testing which
validates that the solution has fulfilled the design intent and has met the requirements. The
horizontal lines extending from the left side to the right side indicate that testing of the end
product is planned in parallel with each corresponding phase of development.

15

As a result, requirements and design descriptions must be written such that they are testable.

Figure 1. Diagram of the V-model.2

The various phases of the V-model are as follows (from Ref [1] with modification):
Requirements like Business Requirement Specifications and System Requirement
Specifications begin the life cycle model. Before development is started, a system test
plan is created. The test plan focuses on meeting the functionality specified in the
requirements gathering. For SWiFT, business requirements can also be thought of as
customer/operator/end-user requirements of how the system is expected to perform.
The high-level design (HLD) phase focuses on system architecture and design. It
provides overview of solution, platform, system, product and service/process. If any of
the requirements are not feasible, a resolution is found and the requirements are edited
accordingly. An integration test plan is created in this phase as well in order to test the
pieces of the software systems ability to work together.
The low-level design (LLD) phase is where the actual software components are
designed. It defines the actual logic for each and every component of the system. Class
diagram with all the methods and relation between classes comes under LLD. Component
tests are created in this phase as well.
The implementation phase is where all coding takes place. Once coding is complete, the
path of execution continues up the right side of the V where the test plans developed
earlier are now put to use.
Coding: This is at the bottom of the V-Shape model. Module design is converted into
code by developers.

2 Image credit: http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/

http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/

16

The rigidity of the V-model is both an advantage and disadvantage. It is an advantage if it helps
to ensure requirements and testing criteria are well-reasoned and well-documented. But
experienced and efficient programmers will recognize that software development is an iterative
process – in the sense that early prototypes can help to refine the requirements. So in practice,
the SWiFT software development team is encouraged to incorporate the iterative aspects of other
software development models, but with the following restrictions:

 The first step of defining requirements must be emphasized and have sufficient time
allocated to identify requirements. Developers must not assume requirements will be
defined as time passes.

 As requirements are refined through prototyping, the requirement specifications must be
updated and approved. Corresponding test criteria must also be updated and approved.

 Iterative developments to the turbine control software shall not be deployed to the turbine
hardware until all requirements and test criteria have been fully updated and after the
software has been fully validated against the approved requirements. Configuration
management will be employed to track what changes have been made and peer-review
will determine whether changes have been captured by the requirement specifications.

Although the V-model encourages test planning in parallel with each stage of development, it is
also important that the testing phase includes exploratory testing – discovering software
responses that were not specifically planned for in the requirements. Thus, the test criteria must
be reviewed independently. The test criteria should not focus solely on expected user actions but
also unexpected user actions. The tester must not assume the user/operator or external inputs will
behave as intended by the software developer.

17

4. CONFIGURATION MANAGEMENT PROCESS

Purpose
The purpose of configuration management (CM) is to provide a controlled environment for
development, production, and support activities. CM is the process of identifying and tracking
change. Software product artifacts are identified and managed and baselines of these artifacts are
designated. Issues and change requests associated with the software product are tracked. Backup
and disaster recovery of software product artifacts are implemented. This process must ensure
retrieval of any baselined artifact over the project’s lifetime. While multiple projects may share a
common CM process and practices, the processes and practices are still performed by each
project.

This process incorporates activities from the following SSQAP practice areas:

Configuration Management [CM]
Problem Reporting and Corrective Actions [PR]

Relationships
The configuration management of artifacts and work products is ongoing throughout the
lifecycle of the product. CM includes identification of configuration items, version control,
baselining, and restoration of baselines. The CM interacts with all other practice areas.

The issue tracking process receives issues from internal and external stakeholders including
developers. Issues are identified through all the practice areas and tracked through all applicable
states or stages, an archive of issues is maintained, and reports to the end-users and stakeholders
are provided as appropriate.

Backup and recovery is performed on artifacts from each of the practices as well as artifacts in
intermediate states. Backup on a scheduled basis and recovery on a scheduled and unscheduled
basis are provided for baselines, codes, documents, and any other identified configuration items.

Backup and recovery services will be provided by Sandia corporate services. It is the
responsibility of the SWiFT software project team to place configuration items into version
control in the Corporate TeamForge or Corporate EIMS repositories.

Steps
The following steps are not necessarily sequential and are reiterated on an as-needed basis.

Step # Step Description Step Activity
Identify and Collect Software Configuration Items1

1a Identify and collect
artifacts of practices

 Document the artifacts to be placed under
configuration

 Place configuration items in project team repository

18

Step # Step Description Step Activity
1b Identify and collect

other items
 Identify other items that need to be configuration

controlled
 Collect other items for configuration control

Version Control Software Configuration Items
2a Identify team process

for dealing with
multiple paths of
development

 If multiple paths of development will be taken,
determine the process for controlling that change
(e.g. locking, branch and merge, manually merging
individual projects or multiple versions of the same
artifact)

2b Determine types of
repositories

 Determine the type(s) of repositories needed for
each type of configuration item (e.g., Git, cvs,
subversion, PVCS Version Manager, WebFileshare,
Records Management System, DOORS, shared file
system)

2c Create repositories Create a repository for each repository type

2

2d Archive each item Determine in which repository each software
configuration item belongs

 Place each software configuration item in a
repository

Baseline and Rollback releases
3a Plan for baselines Determine what types of releases are needed (e. g.,

test releases, minor and major releases, emergency
releases, documentation releases) and any common
schedules

 Determine which version control repositories a
release draws from

 Baseline a set of software configuration items
initially for each version control repository

 Develop a method of composing release numbers
to reflect release decisions (10.2.003 reflects that
10 is a major release with architectural differences
from the previous release 9, 2 is a minor release
with enhancements, and 003 contains bug fixes).

 Use the release numbers in naming baselines
 Determine how a promotion model (for example,

“dev, qual, prod”) will be supported by baselining
 Baselines may also be needed at transition points

indicated by the course of the software
development or may be scheduled on a periodic
basis

3

3b Generate baseline Tag a baseline or release in each participating

19

Step # Step Description Step Activity
and corresponding
releases

repository

3c Rollback releases Roll back a release to a previous release when a
critical failure occurs in production or when a
design path proves to be flawed (the release may
be a set of class files delivered, an entire tagged
release, or a tagged component of a release
depending on the needs of the development team)

Track Issues
4a Plan for issue tracking Determine the process flow for tracking issues

 Determine states for issues (e.g., New, Opened,
Approved, Implemented, Verified, Closed)

4b Create a tracking
system

 Create a tracking system for issue tracking that
implements the process for issues to flow from one
state to another state (e.g., bugzilla, PVCS Tracker,
Excel spreadsheet)

4c Track issues Insert issues in the tracking system
 Review new issues and assign properties (e.g.,

severity, owner)
 Track issues as their states change

4

4d Report On a release or test schedule, report metrics (e.g.,
number of open issues, number of open issues of
high severity)

Backup and Restore Archives
5a Backup repository

archives
 Backup repositories for version control and issue

tracking on a predetermined scheduled
 Store repository archives periodically in an off-site

location

5

5b Restore archives Restore archives on a periodic basis to test the
retrieval function

 Restore archives on an as-needed basis when items
contributing to an archive are corrupted

20

Procedure for Software Release
1. Assign version control Package Release Number

1.1. Document version numbers of software sub-components that compose the release
1.2. Tag the TeamForge or EIMS repositories with the Package Release Number

2. Assemble installation package including release notes. Release notes shall include issue
tracking metrics and summaries.

3. Deploy installation package to the hardware-in-the-loop test environment
4. Complete hardware-in-the-loop verification tests

4.1. When Package Release has passed, obtain signatures documenting approval
4.2. Archive report and approvals under the Package Release Number

5. Transfer package to SWiFT

List of Git Repositories on SWiFT TeamForge
The SWiFT TeamForge site is located at https://teamforge.sandia.gov/sf/projects/swift_facility/
(internal Sandia network access only). A user of TeamForge must have a TeamForge account
(request through Sandia WebCARS) and must be given permission to access the SWiFT
TeamForge site (granted by SWiFT software lead).

Repository Name Directory Name Software in Repository
SWiFT Controller swift_control Simulink and Labview code for turbine controller

subsystems which is compiled into Veristand
models.

SWiFT Software swift_software Labview code for the User Interface and Custom
Devices as well as Veristand Projects for Turbine
Controller and Met Tower

SWiFT Compiled
Custom Devices

swift_custom_devices Compiled Custom Devices reside at
C:\Users\Public\Documents\National
Instruments\
NI VeriStand 2011\Custom Devices\

on the Veristand Gateway computer. This entire
directory is kept under version control in this
repository.

SWiFT Hardware-
in-the-Loop

swift_hil All software for hardware-in-the-loop turbine
simulation and automated software testing
capability.

https://teamforge.sandia.gov/sf/projects/swift_facility/

21

Examples of Git and TeamForge Configuration Management
Capabilities

Trackers
Here is an example of the tracker interface which is used for tracking software defects, issues,
feature requests, etc.

Clicking on the link for “artf143386” opens the View Artifact page:

“Associations” allow links to be made between the software repository and the artifact tracker. In
the view above, artifact [artf143386] has been linked to software commit [cmmt542236]. The
link provides bi-directional tracing of issues and their resolution. This means that someone
browsing the software commit history will be able to see and follow the link to this artifact, and

22

someone browsing the tracker history will be able to see and follow the link to the software
commit which fixed the issue.

“Attachments” provide a way to add documentation to the tracker artifact. In this case a PDF has
been attached which has notes on the issue resolution.

Software Commit Tagging

Below is a visualization of the commit history for “swift_control”. The yellow tag labelled
“v1.0.1” is a tagging feature provided by the TeamForge/Git configuration management system
which we will use to tag each repository when a software package is pulled together for release.
This tagging system allows the various repositories to develop independently and then linked
when they are packaged together in a software release.

23

6. RISK MANAGEMENT PROCESS
Purpose
The purpose of risk management is to identify, address, and mitigate potential sources of risk
before they become threats to the successful completion of a project. Risk management spans the
lifetime of the project.

Risk management is integral to the planning, tracking, and oversight activities concerning cost,
schedule, and performance. The objective of risk management is to increase the probability of
project success by controlling threats to program goals in a cost-effective manner.

This process incorporates activities from the following SSQAP practice areas:

Risk Management [RK]

Relationships
This process is driven by results of the requirements management, the project planning, tracking,
and oversight, and the software verification practice areas. The results of the requirements
management processes provide identification of the subject matter experts who can help with the
identification of potential risks. The results of the risk management process will influence how
the project is managed and tracked. Most project plans will include a section identifying risk
events and how they will be managed. Technical reviews of project artifacts will furnish the
basis for monitoring identified risks.

Steps

STEP
#

STEP
DESCRIPTION

STEP
ACTIVITY

1 Plan the risk
management
approach

 Identify risk management requirements and stakeholders
 Define the risk database or a system by which risks will be recorded,

monitored, and tracked
 Identify training requirements associated with defining, recording,

monitoring, and tracking project risks
2 Identify risk events,

owners, and agents
 Identify all known risk events by:

 Gathering information for determining the risk events from sources
such as issues tracking, peer review results, software quality self-
assessments

 Consulting existing categorized risk checklists for similar activities
 Identify the risk owner(s) and risk agents(s) for each risk event. Owners

have responsibility for the risk and risk agents are those affected by the risk
 Describe each risk using a common format in the risk database

 3 Analyze and
prioritize
identified risks

 Determine the impact severity and likelihood of the identified
risk events

 Prioritize in descending order using a combination of each risk’s
severity and likelihood scores or by assigning a ranking based
upon expert judgment, risk tolerance, culture, or programmatic

24

STEP
#

STEP
DESCRIPTION

STEP
ACTIVITY

need
 Group risks of ‘common’ priority into one of the following

response categories: manage (proceed to step 4); watch (move
to a parking lot and revisit occasionally rather than manage
actively); accept (no action will be taken)

4 Define the risk
responses

 Plan options that will facilitate opportunities and reduce
threats to the project’s goals by
 Developing a risk response (action) for each risk event
 Identifying triggers (symptoms) that indicate the impending

threat of a risk event
 Determining associated thresholds that indicate when a risk

becomes unacceptable
 Looking for a common cause that several risks may share

thereby allowing control with one response
5 Monitor identified

risks
 Collect timely, accurate, and relevant information concerning

identified risks
 Determine effectiveness of response actions, changes in the

severity of the impact, and changes in the likelihood of
occurrence

 Report collected information to the appropriate recipients for
determining if there is a problem, whether risk responses have
been executed and are progressing as planned

6 Implement risk
actions

 Execute risk actions as specified in the associated risk response
action

 Record the current status of the risk response actions (open,
closed, deferred, etc.)

25

7. REQUIREMENTS ENGINEERING PROCESS

Purpose
The purpose of requirements engineering practices is to capture, develop, validate, track, and
control the product requirements. Product requirements typically span hardware, software,
operations, support, documentation, product training, and other aspects. Requirements are based
upon project mission, stakeholders’ stated and implied needs and expectations, and
organizational commitments. Changes to requirements must be managed throughout the lifetime
of the project. Requirements should be reviewed and approved by appropriate stakeholders.

This process incorporates activities from the following SSQAP practice areas:

Requirements Development [RD]
Requirements Management [RM]
Stakeholder Involvement [SI]

Relationships
The project plan provides the initial identification of key stakeholders and the project mission
statement as inputs to this process area. Project planning determines whether and when
requirements will be implemented. Risk management activities analyze and try to control events
that affect the ability to satisfy requirements. A product release identifies requirements that are
newly satisfied in that release. Acceptance testing evaluates whether the product meets the
specified requirement.

Steps
STEP

#
STEP

DESCRIPTION
STEP

ACTIVITY
STEP

OUTPUT
1 Plan the

requirements
management
(RM)
infrastructure

 Identify project stakeholders, organizational
commitments, and other sources of
requirements.

 Identify general or high-level product
technical and non-technical requirements

 Identify test types
 Identify resources
 Review project lifecycle model to ensure

requirements management is addressed
adequately in each phase.

 Infrastructure for
implementing
requirements
management

 Inclusion of
requirements
management planning
in the Project Plan or a
separate Requirements
Management Plan

2 Gather candidate
needs, expectations
and requirements

 Gather candidate needs, expectations and
requirements

 Receive change requests
 Gather acceptance criteria
 Perform initial analysis (e.g., general scope,

group and categorize candidate
requirements and change requests)

 Identify resources needed/availability

 List of candidate needs,
expectations,
requirements, and
acceptance criteria

 General scope of
candidate requirements
and change requests

 Informal list of resources
3 Analyze, derive,

negotiate and
document

 Perform detailed requirements analysis
--Revise candidate requirements, change
requests

 Database of
requirements and
relationships within

26

STEP
#

STEP
DESCRIPTION

STEP
ACTIVITY

STEP
OUTPUT

--Derive component requirements
--Establish acceptance criteria
--Identify test case for each requirement

 Determine scope and technical feasibility
 Prioritize requirements
 Allocate requirements
 Document all formal requirements,

acceptance criteria, test cases
 Document traceability

requirements tracking
software (DOORS)

 Project software
requirements document

4 Verify Verify the requirements document
accurately reflects the end user’s needs and
expectations

 Obtain approval of requirements document

 Approved requirements
document

5 Baseline Baseline the requirements per the approved
requirements document according to the
project’s Configuration Management (CM)
process

 Requirements document
baseline under CM

 S/W requirements
baselined under CM

6 Establish change
control

 Establish the requirements change control
procedures according to CM processes. An
automated tool is strongly recommended.

 Requirements change
control procedures under
CM

7 Manage and track Changes to the project can only occur
through the change control process. Each
change (e.g., change to existing requirement,
a new requirement) must proceed from step
2 through step 6

 Changes must be analyzed considering costs,
timelines, and personnel as well as technical
feasibility and impact on other requirements

 Updated change control
records

 Updated requirements
document

 Updated requirements
baseline

27

8. SOFTWARE VERIFICATION PROCESS

Purpose
The purpose of software verification is to ensure (1) that specifications are adequate with respect
to intended use and (2) that specifications are accurately, correctly, and completely implemented.
Software verification also attempts to ensure product characteristics necessary for safe and
proper use are addressed.

This process incorporates activities from the following SSQAP practice areas:

Verification [VE]
Validation [VA]
Measurement & Analysis [MA]

Relationships
Developing and maintaining a software verification plan relies on inputs from all other practices
that create or update artifacts. This practice updates the software verification plan. Outputs from
this practice need to be version controlled.

Steps
STEP

#
STEP

DESCRIPTION
STEP

ACTIVITY
STEP

OUTPUT
Prepare for testing4a
Prepare for
specific test

 Identify artifact to be tested and the
associated test type(s) per the software
verification plan

 Identify demonstrations of solution-
correctness

 Check identified artifact for
completeness

 Ensure required test tools are available
 Review acceptance criteria
 Establish test schedule and resources
 Update Software Verification Plan, as needed

 Identified artifacts to
test

 Code ready for test

4b Prepare test
environment

 Analyze test cases and requirements
and identify required test environments

 Analyze test environments and identity
test tools needed for each environment

 Install and configure test tools for each
test platform

 Test environment
established

4

4c Prepare test cases Identify and obtain existing test cases
 Analyze current set of test cases for

completeness, accuracy, and coverage
 Analyze test cases against requirements

and identify gaps in current test cases

 Test cases
complete and
ready for test

28

STEP
#

STEP
DESCRIPTION

STEP
ACTIVITY

STEP
OUTPUT

 Update test cases with new data
 Provide mapping from test cases to

requirements
 Develop tests to address gaps in

coverage
5 Conduct testing Conduct all tests according to schedules

 Version control test results
 Preliminary test

results

Evaluate and report results6a
Evaluate test
results

 Evaluate test results
-- identify test issues
-- determine that acceptance criteria has been
met/not met
-- determine that previously tested capabilities
continue to perform as expected

 Determine follow up activities if necessary
 Finalize test results

 Test report
6

6b Report test
results to
appropriate
stakeholders

 Report test results to appropriate stakeholders
for action. For example:
-- Capture and track test changes and/or issues
until closed

 -- Submit test issues for analysis and corrective
action
-- Proceed to next development phase
-- Implement process improvement

 Documented
communication of
reported results to
stakeholders

 Tracked action items

Hardware-in-the-Loop Test Environment
The process for validating software on the hardware-in-the-loop system will involve testing all of
the software system requirements and design specifications. These tests will be automated so that
the suite of tests can be applied consistently. It will also be possible to perform exploratory
testing by manipulating the turbine simulator manually.

The hardware-in-the-loop system has a set of controller hardware identical to that of the turbine
itself. As shown in Figure 2, another piece of hardware which simulates the wind turbine plant
model will substitute for the turbine actuators and sensors. The simulator will mimic the turbine
behavior at the electrical connection level by reproducing the signal of every wire at the turbine
controller input/output (IO). The testing software will mimic user interface actions by linking
into the application programming interface. This capability will enable repeatable sequences of
simulated button clicks and data entry that a turbine operator might perform.

29

control
software

IO

Control System

IO

Plant

IO
simulation

environment

plant model

HIL Simulatoruser
interface

user action
simulator

Figure 2: Hardware-in-the-Loop Block Diagram, Ref [2]

Figure 3 shows the connection diagram. Figure 4 and Figure 5 show the completed system.

Figure 3: Hardware-in-the-Loop connection diagram.

30

Figure 4: Hardware-in-the-Loop system packaged in two Pelican cases.

Figure 5: Hardware-in-the-Loop drivetrain simulator.

The hardware-in-the-loop system includes a drivetrain with generator and inverter which
duplicate (at a scaled size) the behavior and communication of the turbine’s generator and
inverter. Also included in the drivetrain are a motor and motor drive which will be used to
simulate the input torque of the turbine rotor.

31

9. DEPLOYMENT AND OPERATIONS SUPPORT PROCESS

Purpose
The purpose of deployment and operations support is to assist and train operators in the
installation, operation, and ongoing use of the product. Operations support also includes those
activities required to manage feedback on the product.

This process incorporates activities from the following SSQAP practice areas:

Deployment [DE]
Life Cycle Support [LS]

Relationships
The operations support plan reflects expectations and requirements for support as specified by
SWiFT operators. This plan may influence or be influenced by the project plan. Project issues
that are submitted by end-users will be recorded in the project’s issue tracking system.

Steps
STEP

#
STEP

DESCRIPTION
STEP ACTIVITY

1. Define and document the Operations
Support Plan

 Determine the responsibilities of the team
supporting the product.

 Identify a point of contact (POC) for questions/issues.
 Utilize the Configuration Management issue tracking

process for handling issues.
 Identify the planned and/or available end-user

documentation (theory manuals, tutorials, user
manuals, etc.).

 Determine the training that the project team will
make available to users.

 Identify and document product interfaces.
 Determine when and how end-user feedback will be

solicited.
 Document above information as the Operations

Support Plan.
2. Implement the Operations

Support Plan
 Prepare the planned and/or available end-user

documentation (theory manuals, tutorials, user
manuals, etc.).

 Provide assistance for installation, operation, and
ongoing use (e.g., schedule, access/download points,
documentation, mentoring, etc.).

 Provide training for installation, operation and
ongoing use (e.g., schedule, tutorials,
documentation, classroom materials, self-study
materials, mentoring, etc.).

 Implement the issues tracking process identified in
Step 1 (e.g., submittals, tracking, reports, reviews,
etc.).

 Solicit operator feedback (e.g., training evaluation

32

STEP
#

STEP
DESCRIPTION

STEP ACTIVITY

forms, verbal feedback, etc.).
3. Manage Operator Feedback

Regarding Support
 Gather feedback (e.g., issue tracking reports,

evaluation forms, emails, verbal comments,
etc.).

 Evaluate/analyze end-user feedback.
 - Type of feedback (e.g., compliment, team

problem, product problem, etc.).
 - Degree of satisfaction (e.g., not at all, low,

medium, high).
 Promote feedback to appropriate project

level as necessary to address problems.

Deployment Procedure
1. SWiFT site lead verifies approvals and test report
2. Operators examine release notes
3. Copy release package to network storage
4. Install the release package on each asset
5. Document the date and time of installation on each asset
6. Perform software commissioning checks

33

10. PROJECT PLANNING, TRACKING, AND OVERSIGHT PROCESS

Purpose
The purpose of project planning, tracking, and oversight is to guide project implementation while
balancing, monitoring, and analyzing project quality, cost, schedule, and performance. Project
planning includes preparing a plan that describes how the project will be performed and
managed. Tracking and oversight include monitoring project activities against the plan and
schedule and then, if deviations occur, taking necessary corrective actions to bring projected
accomplishments and results back into compliance.

This process incorporates activities from the following SSQAP practice areas:

Project Planning [PP]
Project Monitoring and Control [PO]
Problem Reporting and Corrective Actions [PR]

Relationships
Development of the project plan begins primarily with product information from the strategic
plan and the requirements engineering practice area. The project plan may influence or be
influenced by negotiated requirements, project processes, operations support, software
development, configuration management, software verification, and training. Project issues that
impact the project plan (e.g., schedule, costs, performance expectations, etc.) drive modifications
and revisions to the project plan.

Steps
Step

#
Step Description Step Activity

Define, and develop the project parameters (Note: a work breakdown structure or
similar tool may provide all that is needed for step 1)

1

1a Define the work Review project requirements including product
expectations and requirements, requirements
imposed by the organization and/or end-user,
and other requirements that impact the project
(such as security).

 Identify scope of project in sufficient detail to
describe project justification, product,
deliverables, and objective estimates of project
tasks, responsibilities, and schedule

 Identify constraints or limitations (e.g., task
duration, resources, inputs, outputs, etc.)

 Identify attributes (e.g., size, complexity) of the
work products and tasks to estimate effort,
costs, schedule, and resources (e.g., labor,
machinery, materials, etc.)

34

Step
#

Step Description Step Activity

 Identify technical approach (e.g., architectural
features, established technologies to be applied,
breadth of functionality expected in the final
products, etc.)

1b Determine major
project deliverables

 Define logical decision points at which
significant project commitments concerning
resources and technical approach are made
(e.g., concept exploration, development,
production, operations, disposal, etc.)

 Identify review schedule for project metrics
 Identify major project deliverables that will form

the basis of milestones and scheduling
Define the Project Plan (The following substeps are not necessarily sequential.)
2a Plan for data

management
 Establish requirements and procedures to

ensure privacy and security of the data
 Establish a mechanism to archive data and to

access archived data
 Determine the project data to be identified,

collected and distributed
2b Plan for project

resources (e.g., labor,
machinery, equipment,
materials, and methods)

 Identify process requirements
 Determine staffing requirements
 Determine facilities, equipment and component

requirements
2c Plan for needed

knowledge and skills
 Identify knowledge and skills needed to perform

the project
 Assess the knowledge and skills available
 Select mechanisms for providing needed

knowledge and skills (in-house training, external
training, staffing and new hires, external skill
acquisition)

2

2d Plan relevant
stakeholder
involvement

 Determine relevant stakeholders for each major
activity (e.g., those affected by the activity and
those with expertise needed to conduct the
activity)

 Identify roles and responsibilities of
stakeholders

 Identify relative importance of stakeholder to
success of the project

 Identify resources (e.g., training, materials,
time, funding) needed to ensure stakeholder
interaction

35

Step
#

Step Description Step Activity

 Determine schedule for phasing of stakeholder
interaction

2e Plan for significant
variances from the
Project Plan

 Identify risks (may have been done in the Risk
Management practice area)

 Identify mitigating responses for those risks
(may have been done in the Risk Management
practice area)

 Determine thresholds for deciding if a variance
is significant enough to require attention

3 Establish the budget Determine estimates for effort and cost
considering such factors as computer resource
needs, externally supplied products, capabilities
of tools, facilities needed, level of security, and
direct labor/overhead.

 Define the budget
--committed/expected availability of resources
and facilities
--incremental funding requirements

4 Develop the schedule Identify major milestones (e.g., event or
calendar based)
--dependencies between the activities
-- appropriate duration of activities
-- time phasing of activities
--milestones of appropriate time separation

 Identify dependencies for various project
deliverables that will affect when deliverables
can be started or when they need to be
completed

 Determine due dates for project deliverables
based upon estimated effort, available funding,
and resources available

5 Document the Project
Plan

 Document the Project Plan including
information from steps 1-4.

6 Review and approve
the Project Plan

 Distribute the Project Plan for to management
and stakeholders for review

 Resolve issues (e.g., lower or defer technical
performance requirements, negotiate more
resources, find ways to increase productivity,
outsource, adjust the staff skill mix, or revise all

36

Step
#

Step Description Step Activity

plans that affect the project or schedules)
 Update the Project Plan
 Obtain approvals from the appropriate

management and stakeholders
 Obtain commitments from the appropriate

stakeholders

7 Track project
performance vs the
Project Plan

 Review the Project Plan according to the
frequency table. (See Frequency table below.)

 Review project metrics per the project metric
schedule

 Identify significant performance variances from
the Project Plan

8 Implement corrective
actions as necessary

 Determine mitigating responses to significant
project performance variances

 Update the Project Plan
 Obtain approvals and commitments

Frequency
For the purposes of this process, frequency refers to the times at which part or all of a process is
repeated to address significant variances or changes to the project plan.

Frequency Description
Initial The process begins with the documentation of the Project Plan prior to project

implementation.
Periodic Part or all of the process is repeated as necessary for scheduled project milestones.
On-demand The processes are repeated when events dictate (e.g., product issues, operator feedback,

new requirements, discovery of defects in product, etc.). The Project Plan is revisited and
revised as events dictate.

37

11. TRAINING PROCESS

Purpose
The goal of training is to enhance the skills and motivation of a staff that is already educated and
trained in the areas of physics, mathematics, and computational science. This practice area is
primarily concerned with training that is associated with process implementation. The purpose of
training is to develop the skills and knowledge of individuals and teams so they can fulfill their
roles and responsibilities. Project teams need to ensure that the training needs of the project are
satisfied in accordance with their project plan.

Note: Operator training is addressed in the project’s Deployment and Operations Support
Process.

Relationships
The training process receives input from the strategic plan and the project plan. However, all
phases of the project depend upon the skills and knowledge of the project team to deliver a
successful product and satisfy dynamic requirements and expectations. The training process
ensures that the team has the required skills.

Steps
Step # Step Description Step Activity
1 Perform needs analysis

NOTE: Not all of these activities are the
responsibility of the project team but
are identified here so that the team is
aware that these activities are
considered. For example, project
management reviews the project plan to
capture tasking and resource, but more
than likely, it is a team member who
identifies a new methodology that could
impact the project.

 Review project plan to capture task, resources, roles
and responsibilities assignments.

 Compare the actual skills and knowledge of team
members to the skills and knowledge necessary to
fulfill their roles and responsibilities.

 Ensure any organizational training needs are
identified.

 List all gaps between actual skills/knowledge and the
skills/knowledge required to fulfill the project roles
and responsibilities for each team member as well
as the project team as a group.

 Identify potential new concepts, methodologies, or
approaches within industry that pertains to this
project

2 Plan training • Determine appropriate training solutions for each
gap identified in the needs analysis step
(e.g., training classes, internal/external SNL
interchange meetings, subject matter expert
presentations, conferences, seminars, mentoring,
self-study, etc.).

3 Implement the training solutions
(e.g., attend class, conference,
seminar, interchange meeting; self-
study, follow mentoring plan, etc)

 Individual team member
 Project team

4 Maintain records of all training (e.g.,
TEDS RTC, project Excel
spreadsheet, etc.)

 Individual team member
 Project team

38

5 Evaluate and review training needs
(e.g., class critique, job performance
before/after training, impact of
subject matter expert interchange
on project, etc.)

 Individual team member
 Project team

39

12. REFERENCES

1. http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-
use-it/ , Accessed 2015-04-13

2. C. Kleijn, “Introduction to Hardware-in-the-Loop Simulation”, http://www.hil-
simulation.com/images/stories/Documents/Introduction to Hardware-in-the-Loop
Simulation.pdf , Accessed 2015-04-13

40

41

APPENDIX A: SSQAP REQUIRED PRACTICE ACTIVITIES TABLE

SWiFT Software Quality Plans and Procedures
Satisfying SSQAP P2 and Safety Software Requirements

Practice Level: P2
Control Software: Safety Software

Work Products:
 SWiFT Project Plan
 SWiFT Software Quality Assurance Plan
 SWiFT Software Requirements Documents
 SWiFT Software Risk Register
 SWiFT Software Test Sequences
 SWiFT Software Deployment Training
 SWiFT Software Operator Training / Turbine Operating Manual

Practice Activities Based upon Practice Level Tiers P1 & P2 and Safety Software Considerations
The table below lists the practice activities required by the Sandia quality software
implementation document: Specific Use Specification, Sandia Software Quality Assurance
Program (SSQAP). Resulting work products for each practice area are identified.

Process Area /
Global Practice P1 & P2 & Safety Software Work Products

Project Management
Project Planning
[PP]

P1.1 Estimate the scope of the project, estimates of work
product and task attributes, budget and schedule, and
the project plan

P1.2 Define project life cycle
P1.3 Determine estimates of effort and cost
P1.4 Plan needed acquisitions and suppliers
P1.5 Obtain plan commitment

P2.1 Plan for project resources, needed knowledge and skills,
stakeholder involvement, and data management

P2.2 Review plans that affect the project
P2.3 Identify project risks
P2.4 Reconcile work and resource levels

SS.1 Determine regulatory requirements, legal requirements,
and standards

SS.2 Establish and maintain safety criteria
SS.3 Establish a safety organization structure for the project
SS.4 Establish a safety plan
SS.5 Manage safety-related suppliers’ agreements and safety

requirements

SWiFT Software Quality Assurance Plan
SWiFT Project Plan

Project Monitoring
and Control [PO]

P2.1 Monitor project planning parameters, commitments, data
management, and selected supplier processes

SS.1 Monitor, analyze, resolve safety software contributions
to safety incidents

Weekly team meetings with software team, team lead review with project lead
as appropriate.

Risk Management
[RK]

P1.1 Determine risk sources and categories
P1.2 Define risk parameters
P1.3 Establish a risk management strategy
P1.4 Identify risks
P1.5 Evaluate, categorize, and prioritize risks
P1.6 Develop risk mitigation plans
P1.7 Implement risk mitigation plans

SWiFT Software Quality Assurance Plan
SWiFT Software Risk Register

42

Process Area /
Global Practice P1 & P2 & Safety Software Work Products

SS.1 Integrate identification/mitigation/ control of safety-
specific software risks

Requirements
Management [RM]

P1.1 Obtain an understanding of and commitment to
requirements

P1.2 Manage requirements changes

P2.1 Maintain bidirectional traceability of requirements
P2.2 Identify inconsistencies between project work and

requirements

SS.1 Uniquely identify and manage safety-specific
requirements

SWiFT Software Requirements Documents

Requirements and relationships will be managed in DOORS.

Requirements
Development [RD]

P1.1 Elicit needs
P1.2 Develop the customer requirements
P1.3 Analyze requirements
P1.4 Establish product and product component requirements

P2.1 Allocate product component requirements
P2.2 Identify interface requirements
P2.3 Establish operational concepts and scenarios, and a

definition of required functionality
P2.4 Analyze requirements to achieve balance
P2.5 Validate requirements

SS.1 Identify and analyze system hazards that may result
from software failure

SS.2 Determine system/software safety requirements and
allocations

SS.3 Apply safety principles, collect safety assurance
evidence, conduct safety-impact analysis for changes

SWiFT Software Requirements Documents

Approved by: Major Stakeholders.
Sources of requirements are:

 Business Requirements
 System Requirements
 Vestas Technology R&D requirements as documented in controller

specifications
 Turbine Operator interview
 Safety critical requirements

The software development team and SWiFT Project Lead will review and
identify safety critical requirements that will be subject to formal monitoring
and testing.

Stakeholder
Involvement [SI]

P2.1 Manage stakeholder involvement
P2.2 Manage dependencies
P2.3 Resolve coordination issues

SS.1 Manage stakeholder safety concerns, dependencies, and
coordination

The major Stake Holders for the software project are:
 Manager Wind Energy Technologies Dept.
 SWiFT Project Lead
 Software Development Team Lead

Other Stake Holders are:
 Turbine Operators
 Software Development Team
 SWiFT Experiment Team

Measurement &
Analysis [MA]

P2.1 Establish measurement objectives
P2.2 Specify measures, data collection and storage procedures,

and analysis procedures
P2.3 Collect measurement data

SS.1 Collect safety assurance measures

SWiFT Software Quality Assurance Plan
SWiFT Software Test Sequences

Measurement & analysis activities are performed in software verification.

Software Engineering Categories
Technical Solution
[TS]

P1.1 Design the product or product component

P2.1 Develop alternative solutions and selection criteria
P2.2 Select product component solutions
P2.3 Design to the selected product or product component

solutions
P2.4 Implement the design solution

SS.1 Apply safety principles of isolation, independence,
incompatibility, inoperability within design architecture

SS.2 Integrate system failure mode analysis and fault tree
analysis to support design to reduce potential system
hazards

SWiFT Software Quality Assurance Plan
Selected standard industrial control platform and software.

 Base controller logic used on commercial Vestas V27 turbine.
 Use Matlab Simulink for Control loop development
 Use NI Veristand for software development
 Compact RIO controller hardware

Product
Integration [PI]

P2.1 Determine integration sequence
P2.2 Establish the product integration environment,

procedures and criteria
P2.3 Review interface descriptions for completeness

Document software and hardware

43

Process Area /
Global Practice P1 & P2 & Safety Software Work Products

SS.1 Review system safety integration interfaces
SS.2 Ensure that safety analysis covers potential effects of

software failure
Deployment [DE] P2.1 Assemble product components

P2.2 Package and deliver the product or product component
P2.3 Transition supplier products

SS.1 Incorporate any special handling, marking, build
observation processes for the safety aspects

SWiFT Software Deployment Procedure
SWiFT Software Deployment Training
SWiFT Software Operator Training / Turbine Operating Manual
Approved by: Software Development Team Lead
The software development procedure will include:

 Version control tagging in TeamForge (Git)
 Completion of Software Unit Testing
 Completion of Hardware-in-the-Loop Testing

Life Cycle Support
[LS]

P2.1 Establish a technical data package for each release

SS.1 Apply safety principles, collect safety assurance
evidence, conduct safety-impact analysis for changes

SWiFT Software Deployment Procedure
SWiFT Software Deployment Training
SWiFT Software Operator Training / Turbine Operating Manual
The software development procedure will include:

 Version control tagging in TeamForge (Git)
 Completion of Software Unit Testing
 Completion of Hardware-in-the-Loop Testing

Configuration
Management [CM]

P1.1 Identify configuration items
P1.2 Establish a configuration management system
P1.3 Create or release baselines
P1.4 Control configuration items
P1.5 Track change requests

P2.1 Establish configuration management records
P2.2 Perform configuration audits

SS.1 Special controls for the safety-specific components of
the software

SWiFT Software Quality Assurance Plan
SWiFT Software Deployment Procedure
The software development procedure will include:

 Issues and change requests will be tracked using the mechanisms
provided by TeamForge.

 All software and deployment test records will be stored in the
Corporate TeamForge Git Repository.

 Software documentations will be version controlled and stored in
the Corporate EIMS repository.

Problem Reporting
and Corrective
Actions [PR]

P2.1 Analyze issues
P2.2 Take corrective action
P2.3 Manage corrective action

SS.1 Separately identify all safety-related
problems/correction actions

SWiFT Software Quality Assurance Plan

Software Verification and Validation Category
Verification [VE] Verification - assurance that the product meets the

requirements established for that work product.

P1.1 Conduct internal technical review

P2.1 Select work products for verification
P2.2 Establish the verification environment, procedures, and

criteria
P2.3 Prepare for peer reviews
P2.4 Conduct peer reviews
P2.5 Analyze peer review data
P2.6 Perform verification
P2.7 Analyze verification results

SS.1 Develop the verification evidence for the software
safety case argument

SS.2 Integrate system failure mode analysis and fault tree
analysis to support design to reduce potential system
hazards

SWiFT Software Test Sequences
Approved by: SWiFT Software Development Team Lead,

SWiFT Project Lead
All release software will include:

 Formal Code Review of each safety module
 Unit testing of each module for major releases.
 Hardware-In-the-Loop testing of control system.

Validation [VA] Validation - demonstrates that the provided product fulfills its
intended use.

P2.1 Select products for validation
P2.2 Establish the validation environment, procedures, and

criteria
P2.3 Perform validation
P2.4 Analyze validation results
P2.5 Evaluation selected supplier work products

SWiFT Software Test Sequences

44

Process Area /
Global Practice P1 & P2 & Safety Software Work Products

P2.6 Accept the acquired product

SS.1 Integrate safety criteria into the selection of products
for validation, validation procedures, and validation
criteria

Training Support Category
Training [TR] P1.1 Establish the strategic training needs

P1.2 Determine which training needs are the responsibility of
the organization

P1.3 Establish training records

P2.1 Deliver training
P2.2 Assess training effectiveness

SS.1 Determine if system/software safety training activities
are needed

SS.2 Conduct high priority safety training

Maintain records of personnel training in EIMS

Guidance Level of Formality
Specific Use Specification, Sandia Software Quality Assurance Program (SSQAP)

Elements Medium Formality (for P2)
Work
Products

Work products contain significant detail, including key concepts and are likely in draft form.
Work products are identified in the project plan and are stored in a repository available to all project team members.

Reviews Low formality plus project lead and appropriate management are involved in reviews.

Customers are informed of status of reviews.

Key concepts of artifacts are reviewed and approved by team members and appropriate management.

Review records become work products.

Training Low formality plus identification of critical skills redundancy (where cross-training results in several team members who are
knowledgeable of key areas).

Feedback on effectiveness of training experiences is collected.

Training records become work products.

Tools Low formality plus tools of a more specialized nature to address specific tasks (for example, requirements management,
collaborative development/support environments).

Tools are available to appropriate project members and management and stakeholders.

45

DISTRIBUTION

1 MS0899 Technical Library 9536 (electronic copy)

